测试Jekyll日志功能

【线性】

大众用法:

① $y=kx+b$ (也不算错… )

② $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \mathcal{F}_3 \subseteq … \subseteq \mathcal{F}_n $ (线性叙事,typically abused in literature analysis)

③aligned. e.g.”基因在染色体上呈线性排列”

实际上:

$f(x+y)=f(x)+f(y)$, $ f(ax)=af(x) $.

【拐点】

大众用法:

\[\{t|f'(t)=0\}\]

实际上:

\[\{t|f''(t)\}=0\]

【有限的】

大众用法:

limited (and hence bounded) ;

实际上:

finite (not necessarily bounded).

【几何级数的】

大众用法:

$y∝e^t$;

实际上:

$y=\sum x^n $ (usually interested in convergent ones where $ \mid x \mid< 1$ and hence $y$ is bounded).

【(利率的)几何平均值】

课本用法:

$G_{textbook} = \sqrt[n]{\prod_i^n(1+r_i)}-1$

实际上:

$G=\sqrt[n]{\prod_i^n(r_i)}$;

且有

\begin{equation} \begin{aligned} G_{textbook} = \exp\log(\sqrt[n]{\prod_i^n(1+r_i)})-1 \ = \exp((1/n)\sum_i^n\log(1+r_i))-1 \end{aligned} \end{equation}

$>\exp(\log(1/n)\sum_i^n(1+r_i))-1 =(1/n)\sum_i^n(r_i)+1-1= A \geq G$